Huang, S.; Tegg, L.; Yamini, S. A.; Tuli, V.; Burr, P.; McCarroll, I.; Yang, L.; Moore, K. L.; Cairney, J. M.: Atom probe study of second-phase particles in Zircaloy-4. Journal of Nuclear Materials 616, 156049 (2025)
Huang, S.; Tegg, L.; Yamini, S. A.; Chen, L.; Burr, P.; Qu, J.; Yang, L.; Mccarroll, I.; Cairney, J. M.: Atomic distribution of alloying elements and second phase particles (SPPs) identification in Optimised ZIRLO. Acta Materialia 297, 121365 (2025)
Schwarz, T.; Birbilis, N.; Gault, B.; McCarroll, I.: Understanding the Al diffusion pathway during atmospheric corrosion of a Mg-Al alloy using atom probe tomography. Corrosion Science 252, 112951 (2025)
Yang, L.; Chen, E. Y.-S.; Qu, J.; Garbrecht, M.; McCarroll, I.; Mosiman, D. S.; Saha, B.; Cairney, J. M.: Improved atom probe specimen preparation by focused ion beam with the aid of multi-dimensional specimen control. Microstructures 5 (1), 2025007 (2025)
Torkornoo, S.; Bohner, M.; McCarroll, I.; Gault, B.: Optimization of Parameters for Atom Probe Tomography Analysis of β-Tricalcium Phosphates. Microscopy and Microanalysis 30 (6), pp. 1074 - 1082 (2024)
Schwarz, T.; Yu, W.; Zhan, H.; Gault, B.; Gourlay, C.; McCarroll, I.: Uncovering Ce-rich clusters and their role in precipitation strengthening of an AE44 alloy. Scripta Materialia 232, 115498 (2023)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…