Roters, F.; Ma, A.: Ein nicht lokales Versetzungsdichte basiertes konstitutives Gesetz für Kristall-Plastizitäts-Finite-Elemente-Simulationen. Institutsseminar, Fraunhofer-Institut für Werkstoffmechanik IWM, Freiburg (2005)
Roters, F.; Ma, A.: Die Kristall-Plastizitäts-Finite-Elemente-Methode und ihre Anwendung auf Bikristall-Scherversuche. Institutsseminar, Institut für Werkstoffwissenschaften, Universität, Erlangen-Nürnberg (2005)
Roters, F.; Jeon-Haurand, H. S.; Raabe, D.: A texture evolution study using the Texture Component Crystal Plasticity FEM. Plasticity 2005, Kauai, USA (2005)
Raabe, D.; Roters, F.: How do 10^10 crystals co-deform. "Weitab vom Hooksechen Gesetz -- Moderne Ansätze und Ingenieurpraxis großer inelastischer deformation metallischer Werkstoffe'' Symposium der Akademie der Wissenschaften und der Literatur, Mainz, Germany (2004)
Raabe, D.; Roters, F.: Physically-Based Large-Scale Texture and Anisotropy Simulation for Automotive Sheet Forming. TMS Fall meeting, New Orleans, LA, USA (2004)
Roters, F.: Das Anwendungspotential der Kristallplastizitäts-Finite-Elemente-Methode aus Sicht der werkstoffphysikalischen Grundlagen. Werkstoffwoche 2004, München, Germany (2004)
Roters, F.; Ma, A.; Raabe, D.: The Texture Component Crystal Plasticity Finite Element Method. Keynote lecture at the Third GAMM (Society for Mathematics and Mechanics) Seminar on Microstructures, Stuttgart, Germany (2004)
Roters, F.: Numerische Simulation der Metallumformung und Rekristallisation. Workshop, Simulation und numerische Modellierung, Materials Valley e.V., Mainz (2003)
Wang, Y.; Roters, F.; Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. 1st Colloquium Process Scaling, Bremen, Germany (2003)
Roters, F.: Crystal plasticity FEM from grain scale plasticity to anisotropic sheet forming behaviour. 13th international Workshop on Computational Modelling of the Mechanical Behaviour of Materials, Magdeburg, Germany (2003)
Raabe, D.; Helming, K.; Roters, F.; Zhao, Z.; Hirsch, J.: A Texture Component Crystal Plasticity Finite Element Method for Scalable Large Strain Anisotropy Simulations. ICOTOM 13, Seoul, South Korea (2002)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.