Duarte, M. J.; Fang, X.; Rao, J.; Krieger, W.; Brinckmann, S.; Dehm, G.: In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56 (14), pp. 8732 - 8744 (2021)
Luo, W.; Kirchlechner, C.; Fang, X.; Brinckmann, S.; Dehm, G.; Stein, F.: Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Materials and Design 145, pp. 116 - 121 (2018)
Li, Y.; Fang, X.; Zhang, S.; Feng, X.: Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation. Corrosion Science 135, pp. 192 - 196 (2018)
Yue, M.; Dong, X.; Fang, X.; Feng, X.: Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. Journal of Applied Physics 123 (15), 155301 (2018)
Fang, X.; Dong, X.; Jiang, D.; Feng, X.: Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks. Oxidation of Metals 89 (3-4), pp. 331 - 338 (2018)
Lu, S.-Y.; Chen, Y.; Fang, X.; Feng, X.: Hydrogen peroxide sensor based on electrodeposited Prussian blue film. Journal of Applied Electrochemistry 47 (11), pp. 1261 - 1271 (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…