Li, D.; Zhang, X.; Zhao, W.; Merrill, H. D. M.; Meyer, N. T. M.; Antonov, S.; Liao, Y.; Zheng, Y.: The Role of High-Index Twinning on Hierarchical α Microstructure in a Metastable β Ti–5Al–5Mo–5V–3Cr Alloy. JOM-Journal of the Minerals Metals & Materials Society 73 (8), pp. 2303 - 2311 (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Nucleation and growth of α phase in a metastable β-Titanium Ti–5Al–5Mo–5V–3Cr alloy: Influence from the nano-scale, ordered-orthorhombic O″ phase and α compositional evolution. Scripta Materialia 194, 113672 (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Atom Probe Tomographic Study of Precursor Metastable Phases and Their Influence on a Precipitation in the Metastable ß-titanium Alloy, Ti–5Al–5Mo–5V–3Cr. TMS 2021 Annual Meeting & Exhibition, online, Pittsburgh, PA, USA (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…