Dehm, G.; Jaya, B. N.; Raghavan, R.; Kirchlechner, C.: Overview on micro- and nanomechanical testing: New Insights in Interface Plasticity and Fracture at Small Length Scales. Acta Materialia 142, pp. 248 - 282 (2018)
Davydok, A.; Jaya, B. N.; Robach, O.; Ulrich, O.; Micha, J.-S.; Kirchlechner, C.: Analysis of the full stress tensor in a micropillar: Ability of and difficulties arising during synchrotron based μLaue diffraction. Materials and Design 108, pp. 68 - 75 (2016)
Jaya, B. N.; Jayaram, V.: Fracture Testing at Small-Length Scales: From Plasticity in Si to Brittleness in Pt. JOM-Journal of the Minerals Metals & Materials Society 68 (1), pp. 94 - 108 (2016)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Can micro-scale fracture tests provide reliable fracture toughness values? A case study in silicon. Journal of Materials Research 30 (5), pp. 686 - 698 (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture Behavior of Nanostructured Heavily Cold Drawn Pearlite: Influence of the Interface. TMS 2017, San Diego, CA, USA (2017)
Jaya, B. N.; Alam, M.; Bhowmick, S.; Das , D. K.; Kamat , S. V.; Asif, S. A. S.; Jayaram, V.: Composition and temperature dependence of fracture behavior of diffusion aluminide bond coats. 2016 TMS Annual Meeting and Exhibition Symposium: High-Temperature Systems for Energy Conversion and Storage, Nashville, TN, USA (2016)
Jaya, B. N.; Köhler, M.; Schnabel, V.; Raabe, D.; Schneider, J. M.; Kirchlechner, C.; Dehm, G.: Micro-scale fracture behavior of Co based metallic glass thin films. 2016 TMS Annual Meeting and Exhibition Symposium: In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques, Nashville, TN, USA (2016)
Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. CNRS GDRi mecano: General Meeting
, Marseille, France (2015)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…