Hou, J.; Zhang, Z.; Preis, W.; Sitte, W.; Dehm, G.: Electrical properties and structure of grain boundaries in n-conducting BaTiO3 ceramics. Journal of the European Ceramic Society 31 (5), pp. 763 - 771 (2011)
Cha, L.; Clemens, H.; Dehm, G.: Microstructure evolution and mechanical properties of an intermetallic Ti–43.5Al–4Nb–1Mo–0.1B alloy after ageing below the eutectoid temperature. International Journal of Materials Research 102 (6), pp. 703 - 708 (2011)
Heinz, W.; Pippan, R.; Dehm, G.: Investigation of the fatigue behavior of Al thin films with different microstructure. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 527 (29-30), pp. 7757 - 7763 (2010)
Fischer, F. D.; Cha, L.; Dehm, G.; Clemens, H. J.: Can local hot spots induce α2/γ lamellae during incomplete massive transformation of γ-TiAl alloys? Intermetallics 18 (5), pp. 972 - 976 (2010)
Fischer , F. D.; Waitz, T.; Scheu, C.; Cha, L.; Dehm, G.: Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics 18 (4), pp. 509 - 517 (2010)
Matoy, K.; Detzel, T.; Müller , M.; Motz, C.; Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surface and Coatings Technology 204 (6-7), pp. 878 - 881 (2009)
Dehm, G.: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Progress in Materials Science 54 (6), pp. 664 - 688 (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…