Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The role of cementite on the hydrogen embrittlement mechanism in martensitic medium-carbon steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 859, 144204 (2022)
Pinson, M.; Springer, H.; Verbeken, K.; Depover, T.: The effect of an Al-induced ferritic microfilm on the hydrogen embrittlement mechanism in martensitic steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 851, 143587 (2022)
Pinson, M.; Das, S. M.; Springer, H.; Verbeken, K.; Depover, T.: The Role of an Al-induced Ferritic Microfilm in Martensitic Steels on the Hydrogen Embrittlement Mechanisms Revealed by Advanced Microscopic Characterization. Microscopy and Microanalysis 28 (S1), pp. 1622 - 1624 (2022)
Pinson, M.; Das, S. M.; Springer, H.; Depover, T.; Verbeken, K.: The addition of aluminum to brittle martensitic steels in order to increase ductility by forming a grain boundary ferritic microfilm. Scripta Materialia 213, 114606 (2022)
Pinson, M.; Nikolic, K.; Springer, H.; Depover, T.; Verbeken, K.: Comparison between the hydrogen embrittlement behavior of an industrial and a lightweight bearing steel. Procedia Structural Integrity 42, pp. 471 - 479 (2022)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The effect of quench cracks and retained austenite on the hydrogen trapping capacity of high carbon martensitic steels. International Journal of Hydrogen Energy 46 (29), pp. 16141 - 16152 (2021)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe–C steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 792, 139754 (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.