Auinger, M.: High Temperature Corrosion in Low Activity Gases - Theoretical Calculations and Experimental Comparison of Oxide, Nitride and Carbide Formation. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Auinger, M.: Phase Diagrams with FACTSage - Speaking different Languages for Thermochemical Properties. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2013)
Auinger, M.: Internal oxidation and nitridation of hot rolled steels - A theoretical study and its experimental verification. Gunnar Eriksson Symposium & GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Germany (2012)
Auinger, M.: What do we know about internal oxidation in hot-rolled steels? - A theoretical study and its experimental verification. Seminar Talk at Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universtät Bochum, Bochum, Germany (2012)
Auinger, M.: Experimental studies and theoretical calculations on the formation of nitrides and oxides during selective oxidation in binary iron-alloys. 8th International Symposium on High-Temperature Corrosion and Protection of Materials, Les Embiez, France (2012)
Auinger, M.: Applied Simulations of Thermodynamic Reactions and Interphase Diffusion (ASTRID): Vorstellung des Konzepts und Beispiele zur Korngrenzenoxidation. CDL-Workshop Strukturmodellierung in technischen Metallen, Rust, Austria (2012)
Auinger, M.: Theory and Experiment for High Temperature Metal-Gas Reactions. Seminar Talk at Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA (2011)
Auinger, M.; Rohwerder, M.: Connecting Thermochemical Reactions and Diffusion - The Formation of Grain Boundary Oxides in Steel Sheets. 18th Conference on Computer Methods in Materials Technology, Zakopane, Poland (2011)
Evers, S.; Borodin, S.; Auinger, M.; Rohwerder, M.: Understanding of Hydrogen in Steel by Scanning Kelvin Probe measurements on evaporated Pd-Films. 7th International Conference on Diffusion in Solids and Liquids (DSL 2011), Algarve, Portugal (2011)
Auinger, M.: Coupling Thermodynamics and Diffusion for describing Metal/Gas Reactions at elevated Temperatures. Lecture at Institute for Materials Research, Tohoku University, Sendai, Japan (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. Division of Materials and Manufacturing Science, Osaka University, Osaka, Japan (2010)
Auinger, M.; Borodin, S.; Evers, S.; Rohwerder, M.: Thermodynamic Studies of Hydrogen Permeation and the Effect of Oxide Formation in Pure Iron Samples. 6th International Conference on Diffusion in Solids and Liquids, Paris, France (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Simulations of the Oxidation Processes in Polycrystalline Metallic Alloys. International Workshop “Grain boundary diffusion, stresses and segregation”, Moscow, Russia (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. International Symposium “High Temperature Oxidation and Corrosion”, Zushi (Tokyo), Japan (2010)
Auinger, M.; Vogel, A.; Rohwerder, M.: High Temperature Corrosion in low-activity gases - Theoretical Calculations and Experimental Comparison of Oxide, Nitride and Carbide Formation. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…