Ebner, A. S.; Brinckmann, S.; Plesiutschnig, E.; Clemens, H.; Pippan, R.; Maier-Kiener, V.: A Modified Electrochemical Nanoindentation Setup for Probing Hydrogen-Material Interaction Demonstrated on a Nickel-Based Alloy. JOM-Journal of the Minerals Metals & Materials Society 72 (5), pp. 2020 - 2029 (2020)
Cha, L.; Clemens, H.; Dehm, G.: Microstructure evolution and mechanical properties of an intermetallic Ti–43.5Al–4Nb–1Mo–0.1B alloy after ageing below the eutectoid temperature. International Journal of Materials Research 102 (6), pp. 703 - 708 (2011)
Beschliesser, M.; Chatterjee, A.; Lorich, A.; Knabl, W.; Kestler, H.; Dehm, G.; Clemens, H.: Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800 degrees C. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 329-331, pp. 124 - 129 (2002)
Schillinger, W.; Clemens, H.; Dehm, G.; Bartels, A.: Microstructural stability and creep behavior of a lamellar γ-TiAl based alloy with extremely fine lamellar spacing. Intermetallics 10 (5), pp. 459 - 466 (2002)
Bartels, A.; Clemens, H.; Dehm, G.; Lach, E.; Schillinger, W.: Strain rate dependence of the deformation mechanisms in a fully lamellar γ-TiAl-based alloy. Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 93 (3), pp. 180 - 185 (2002)
Zhang, D.; Dehm, G.; Clemens, H.: On the microstructural evolution and phase transformation in a high niobium containing γ-TiAl alloy. Zeitschrift für Metallkunde 91 (11), pp. 950 - 956 (2000)
Chatterjee, A.; Dehm, G.; Scheu, C.; Clemens, H.: Onset of microstructural instability in a fully lamellar Ti-46.5 at.% Al-4 al.% (Cr,Nb,Ta,B) alloy during short-term creep. Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 91 (9), pp. 755 - 760 (2000)
Zhang, D.; Dehm, G.; Clemens, H.: Effect of heat treatments and hot-isostatic pressing on phase transformations and microstructure in a β/B2 containing γ-TiAl based alloy. Scripta Materialia 42 (11), pp. 1065 - 1070 (2000)
Bidlingmaier, T.; Wanner, A.; Dehm, G.; Clemens, H.: Acoustic Emission during Room Temperature Deformation of a γ-TiAl Based Alloy. Zeitschrift für Metallkunde 90, pp. 581 - 587 (1999)
Clemens, H.; Mayer, S.; Scheu, C.: Microstructure and Properties of Engineering Materials. In: Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications: Second Edition, pp. 3 - 20 (Eds. Schreyer, A.; Clemens, H.; Mayer, S.). wiley, Hoboken, NJ, USA (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…