An, D.; Griffiths, T. A.; Konijnenberg, P. J.; Mandal, S.; Wang, Z.; Zaefferer, S.: Correlating the five parameter grain boundary character distribution and the intergranular corrosion behaviour of a stainless steel using 3D orientation microscopy based on mechanical polishing serial sectioning. Acta Materialia 156, pp. 297 - 309 (2018)
Wang, Z.; Zaefferer, S.: On the accuracy of grain boundary character determination by pseudo-3D EBSD. Materials Characterization 130, pp. 33 - 38 (2017)
Zaefferer, S.; An, D.; Wang, Z.: Experimental investigations on the relationship between crystallographic character of grain boundaries and their functional and mechanical properties in various engineering materials. DPG Frühjahrtagung, Dresden, Germany (2017)
Wang, Z.: Investigation of crystallographic character and molten-salt-corrosion properties of grain boundaries in a stainless steel using EBSD and ab-initio calculations. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.