Itani, H.; Santa, M.; Keil, P.; Grundmeier, G.: Backside SERS Studies of Inhibitor Transport Through Polyelectrolyte Films on Ag-substrates. Journal of Colloid and Interface Science 357 (2), pp. 480 - 486 (2011)
Posner, R.; Santa, M.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel I. Interface Potentials and Characteristics of Ion Transport Processes. Journal of the Electrochemical Society 158 (3), pp. C29 - C35 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel II. The Influence of -Glycidoxypropyltrimethoxysilane as an Adhesion Promoting Additive. Journal of the Electrochemical Society 158 (3), pp. C36 - C41 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: In-situ study of the deterioration of thiazole/gold and thiazole/silver interfaces during interfacial ion transport processes. Journal of Electroanalytical Chemistry 643 (1-2), pp. 94 - 101 (2010)
Kundu, S.; Nagaiah, T.C.; Xia, W.; Wang, Y. M.; Van Dommele, S.; Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.et al.; Muhler, M.: Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen reduction Reaction. J. Phys. Chem. C 113 (32), pp. 14302 - 14310 (2009)
Santa, M.; Posner, R.; Grundmeier, G.: In-situ backside surface enhanced Raman study on the reactive wetting process at noble metal-monolayer interfaces supported by SKP, XPS and ToF-SIMS. Kurt Schwabe Symposium 2009, Erlangen, Germany (2009)
Santa, M.; Posner, R.; Grundmeier, G.: Surface enhanced Raman spectroscopy and Scanning Kelvin Probe studies of corrosive de-adhesion at polymer-metal interfaces. The 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Santa, M.: Combined in-situ spectroscopic and electrochemical studies of interfacial and interphasial reactions during adsorption and de-adhesion of polymer films on metals. Dissertation, Universität Paderborn, Paderborn, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.