Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. MPIE-ICAMS workshop, Ebernburg, Germany (2017)
Grabowski, B.: Data driven engineering of advanced materials: Combining high precision and scale bridging. Colloquium at Forschungszentrum Jülich, Jülich, Germany (2017)
Grabowski, B.: Development and application of quantum mechanics based simulation tools for the design of modern metallic materials. Seminar at RWTH Aachen, Aachen, Germany (2017)
Grabowski, B.: Discovery of an ordered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar at University of Münster, Münster, Germany (2016)
Grabowski, B.: Discovery of an orderered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar, Universität Münster, Münster, Germany (2016)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Development of methodologies to efficiently compute melting properties fully from ab initio. 2nd German-Dutch Workshop on Computational Materials Science, Domburg, The Netherlands (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at University Paderborn, Paderborn, Germany (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at Universität Paderborn, Paderborn, Germany (2016)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Lattice excitations in magnetic alloys: Recent advances in ab initio modeling of coupled spin and atomic fluctuations. TMS Annual Meeting 2016, Nashville, TN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…