Knezevic, V.; Sauthoff, G.: Strengthening of Martensitic/Ferritic 12%Cr Model Steels Through Laves Phase Precipitation. Euromat 2003, 8th European Congress on Advanced Materials and Processes, München, Germany (2003)
Risanti, D. D.; Sauthoff, G.: Strengthening of Hot Corrosion-Resistant Fe-Al alloys Through Laves Phase Precipitation. Euromat 2003, 8th European Congress on Advanced Materials and Processes, München, Germany (2003)
Stallybrass, C.; Sauthoff, G.: Ferritic Fe–Al–Ni–Cr alloys for high temperature applications. Thirteenth International Conference on the Strength of Materials (ICSMA XIII), Budapest, Hungary (2003)
Schneider, A.; Falat, L.; Sauthoff, G.; Frommeyer, G.: Microstructures and Mechanical Properties of Fe–Al–C and Fe–Al–M–C (M = Ti, V, Nb, Ta) Alloys. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Stein, F.; Palm, M.; Sauthoff, G.: Structures and Stability of Laves Phases. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Schneider, A.; Frommeyer, G.; Sauthoff, G.: Intermetallics for High-Temperature Applications - Needs and Prospects. Intern. Symp. Progress of Metal Science, Tokyo (2002)
Stein, F.; Sauthoff, G.; Palm, M.: Intermetallic Phases and Phase Equilibria in the Fe–Zr and Fe–Zr–Al Systems. Discussion Meeting on Thermodynamics of Alloys (TOFA 2002), Rome, Italy (2002)
Palm, M.; Sauthoff, G.: Characterization and Processing of an Advanced Intermetallic NiAl-Base Intermetallic Alloy for High-Temperature Applications. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming (2002)
Stein, F.; Zhang, L.; Palm, M.; Sauthoff, G.: Al-Ti Alloys with Al-Rich Titanium Aluminides: Phase Equilibria, Evolution of Phases and Strength of Lamellar TiAl+r-Al2Ti Alloys. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming, USA (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…