Kini, M. K.; Nandy, S.; Best, J. P.; Dehm, G.: Deformation of CoCrFeNi alloy thin films under thermal fatigue. International Conference on Creep and Fracture of Engineering Materials and Structures CREEP 2024, Bangalore, India (2024)
Kanjilal, A.; Best, J. P.; Dehm, G.: Using in-situ nano- and micromechanical testing to probe the fracture behavior of intermetallic Laves phase materials. 7th International Indentation Workshop – IIW7, Hyderabad, India (2023)
Dehm, G.: Resolving the interplay of structure and energy landscapes of tilt grain boundaries in metals. 3rd ELSICS Conference and Bunsen-Colloquium “Energy Landscapes and Structure in Ion Conducting Solids (ELSICS)”, Ulm, Germany (2023)
Dehm, G.; Liebscher, C.: In situ TEM study of deformation and phase transformation mechanisms in chemically complex alloys. Symposium In-situ & Environmental Microscopy, 20th International Microscopy Congress, Busan, Korea (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Role of temperature on micromechanical fracture behaviour of Laves phase in Mg–Al–Ca ternary alloy. FEMS EUROMAT 2023, Frankfurt, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Role of temperature on micromechanical fracture behavior of Laves phase in Mg–Al–Ca ternary alloy. FEMS Euromat 2023, Frankfurt am Main, Germany (2023)
Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Dehm, G.: Grain boundary phases in metallic materials: Structure, stability and properties. MiFuN III - Microstructural Functionality at the Nanoscale, Venice, Italy (2023)
Dehm, G.: On the interplay between grain boundary complexions and chemical composition for fcc metals. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2023, Bernkastel-Kues, Germany (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
Here the focus lies on investigating the temperature dependent deformation of material interfaces down to the individual microstructural length-scales, such as grain/phase boundaries or hetero-interfaces, to understand brittle-ductile transitions in deformation and the role of chemistry or crystallography on it.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…