Kwiatkowski da Silva, A.; Ponge, D.; Inden, G.; Gault, B.; Raabe, D.: Physical Metallurgy of segregation, austenite reversion, carbide precipitation and related phenomena in medium Mn steels. Gordon Research Conference: Physical Metallurgy, Biddeford, ME, USA (2017)
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2024, Imperial College London, UK, 2024-04 - 2024-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2023, Imperial College London, UK, 2023-04 - 2023-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2022, Imperial College London, UK, 2022-04 - 2022-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2021, Imperial College London, UK, 2021-04 - 2021-07
Lee, C.-G.; Nallathambi, V.; Kang, T.; Aota, L. S.; Reichenberger, S.; El-Zoka, A.; Choi, P.-P.; Gault, B.; Kim, S.-H.: Magnetocaloric effect of Fe47.5Ni37.5Mn15 bulk and nanoparticles: A cost-efficient alloy for room temperature magnetic refrigeration. arXiv (2024)
Kim, S.-H.; Yoo, Su, S.-H.; Aota, L. S.; El-Zoka, A.; Kang, P. W.; Lee, Y.; Gault, B.: B dopant evolution in Pd catalysts after H evolution/oxidation reaction in alkaline environment. arXiv (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.