Huang, S.; Tegg, L.; Yamini, S. A.; Tuli, V.; Burr, P.; McCarroll, I.; Yang, L.; Moore, K. L.; Cairney, J. M.: Atom probe study of second-phase particles in Zircaloy-4. Journal of Nuclear Materials 616, 156049 (2025)
Huang, S.; Tegg, L.; Yamini, S. A.; Chen, L.; Burr, P.; Qu, J.; Yang, L.; Mccarroll, I.; Cairney, J. M.: Atomic distribution of alloying elements and second phase particles (SPPs) identification in Optimised ZIRLO. Acta Materialia 297, 121365 (2025)
Schwarz, T.; Birbilis, N.; Gault, B.; McCarroll, I.: Understanding the Al diffusion pathway during atmospheric corrosion of a Mg-Al alloy using atom probe tomography. Corrosion Science 252, 112951 (2025)
Yang, L.; Chen, E. Y.-S.; Qu, J.; Garbrecht, M.; McCarroll, I.; Mosiman, D. S.; Saha, B.; Cairney, J. M.: Improved atom probe specimen preparation by focused ion beam with the aid of multi-dimensional specimen control. Microstructures 5 (1), 2025007 (2025)
Torkornoo, S.; Bohner, M.; McCarroll, I.; Gault, B.: Optimization of Parameters for Atom Probe Tomography Analysis of β-Tricalcium Phosphates. Microscopy and Microanalysis 30 (6), pp. 1074 - 1082 (2024)
Schwarz, T.; Yu, W.; Zhan, H.; Gault, B.; Gourlay, C.; McCarroll, I.: Uncovering Ce-rich clusters and their role in precipitation strengthening of an AE44 alloy. Scripta Materialia 232, 115498 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.