Garcia, J.; Lammer, A.; Garcia, L. F.; Weber, S.; Kostka, A.; Pyzalla, A. R.: Investigations of Wear Mechanisms in Diamond Tools with Fe-Based Matrices Reinforced with WC-Co Particles. Intern. Symposium on Friction, Wear and Wear Protection, Aachen, Germany (2008)
Garcia, L. F.; Garcia, J.; Kostka, A.; Weber, S.; Lammer, A.: Wear Behaviour of Cooper-Iron-Cobalt Diamond Tool Bonding Matrices Reinforced with Hardmetal Granulates. 9th Intern. Conference on the Science of Hard Materials, Montego Bay, Jamaica (2008)
Agudo, L.; Pinto, H.; Kostka, A.; Weber, S.; Wagner, J.; Arenholz, E.; Bruckner, J.; Pyzalla, A. R.: Study of Microstructure and Residual Stresses in Dissimilar Al/Steel Welds Produced by Cold Metal Transfer. MECASENS IV, Wien (2007)
Agudo, L.; Kostka, A.; Weber, S.; Wagner, J.; Arenholz, E.; Bruckner, J.; Pyzalla, A. R.: Al/Steel welds: Fundamental investigation of intermetallic phases. 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, FeAl2007, Interlaken, Switzerland (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…