Leineweber, A.; Stein, F.: Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation”. Materials and Design 247, 113373 (2024)
Stein, F.; He, C.: About the Alkemade Theorem and the Limits of its Applicability for the Construction of Ternary Liquidus Surfaces. Journal of Phase Equilibra and Diffusion 45, pp. 489 - 501 (2024)
Gedsun, A.; Stein, F.; Palm, M.: Phase Equilibria in the Fe-Al-Nb(-B) System at 700 degrees C. Journal of Phase Equilibra and Diffusion 43 (4), pp. 409 - 418 (2022)
Distl, B.; Hauschildt, K.; Rashkova, B.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part I: Low-Temperature Phase Equilibria Between 700 and 900 °C. Journal of Phase Equilibra and Diffusion 43, pp. 355 - 381 (2022)
Distl, B.; Hauschildt, K.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part II: High-Temperature Phase Equilibria Between 1000 and 1300 °C. Journal of Phase Equilibra and Diffusion 43, pp. 554 - 575 (2022)
Gedsun, A.; Stein, F.; Palm, M.: Development of new Fe–Al–Nb(–B) alloys for structural applications at high temperatures. MRS Advances 6, pp. 176 - 182 (2021)
Stein, F.; Leineweber, A.: Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science 56, pp. 5321 - 5427 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…