Neugebauer, J.: Solvent-controlled single atom dissolution, surface alloying and Wulff shapes of nanoclusters; Electrocatalysis at electrocodes in the dry. Workshop: Research Area III, ZEMOS, Bochum, Germany (2016)
Neugebauer, J.: Collective variable description of crystal anharmonicity. IPAM Workshop II: Collective Variables in Classical Mechanics, Los Angeles, CA, USA (2016)
Neugebauer, J.: Modelling structural materials in extreme environments by ab initio guided multiscale simulations. International Workshop “Theory and Modelling of Materials in Extreme Environment", Abingdon, UK (2016)
Neugebauer, J.: Ab initio thermodynamic description of advanced structural materials: Status and challenges. Workshop “Ab-initio Based Modeling of Advanced Materials”, Yekaterinburg, Russia (2016)
Neugebauer, J.: Stahl: Wie ein alter Werkstoff sich immer wieder neu erfindet und damit Wissenschaft und Wirtschaft beflügelt. 129. Versammlung der Gesellschaft der deutschen Naturforscher und Ärzte, Greifswald, Germany (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Intermartensitic Phase Boundaries in Ni–Mn–Ga Alloys: A Viewpoint from Ab initio Thermodynamics. 5th International Conference on Ferromagnetic Shape Memory Alloys, Sendai, Japan (2016)
Zendegani, A.; Körmann, F.; Hickel, T.; Hallstedt, B.; Neugebauer, J.: Thermodynamic properties of the quaternary Q phase in Al–Cu–Mg–Si: a combined ab-initio, phonon and compound energy formalism approach. International Conference on Advanced Materials Modelling (ICAMM), Rennes, France (2016)
Neugebauer, J.: Ab initio description of defects in materials under extreme conditions. 2016 Joint ICTP-CAS-IAEA School and Workshop on Plasma-Material Interaction in Fusion Devices, Hefei, China (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…