Li, X.; Stein, F.: Coarsening of Lamellar Microstructures. 63rd Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Fracture Toughness of Hexagonal and Cubic NbCo2 Laves Phases. Nanobrücken 2017, European Nanomechanical Testing Conference, University of Manchester, Manchester, UK (2017)
Horiuchi, T.; Stein, F.; Abe, K.; Taniguchi, S.: Formation of Complex Intermetallic Phases from Supersaturated Co Solid Solution in a Co–3.9Nb Alloy. TMS 2017 Annual Meeting, San Diego, CA, USA (2017)
Stein, F.: Stability Competition between Laves Phase Polytypes. Escola Politécnica da Universidade de São Paulo, University Sao Paulo, Sao Paulo, Brazil (2016)
Stein, F.; Philips, N.: High-Temperature Phase Equilibria and Solidification Behaviour of Nb-rich Nb–Al–Fe Alloys. TOFA 2016, Discussion Meeting on Thermodynamics of Alloys, Santos, Brazil (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Šlapáková, M.; Liebscher, C.; Kumar, S.; Stein, F.: Deformation Mechanism of Single Phase C14 Laves Phase NbFe2 Studied by TEM. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Stein, F.; Horiuchi, T.: Discontinuous Precipitation of the Complex Intermetallic Phase Nb2Co7 from Supersaturated Co Solid Solution. Thermec 2016, Graz, Austria (2016)
Stein, F.; Luo, W.; Li, X.; Palm, M.: Diffusion couples as a "new" method for material synthesis. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Li, X.; Scherf, A.; Heilmaier, M.; Stein, F.: Coarsening Kinetics of Lamellar FeAl + FeAl2 Microstructures in Al-rich Fe–Al Alloys. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Li, X.; Scherf, A.; Janda, D.; Heilmaier, M.; Stein, F.: Two-Phase Binary Fe–Al Alloys with Fine-Scaled Lamellar Microstructure and the Effect of Ternary Additions on Microstructure, Stability, and Mechanical Behavior. 123HiMAT-2015, Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering, Sapporo, Japan (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.