Sevlikar, S. V.; Muralikrishna, G. M.; Gaertner, D.; Starikov, S.; Brink, T.; Scheiber, D.; Smirnova, D.; Irmer, D.; Tas, B.; Esin, V. A.et al.; Razumovskiy, V. I.; Liebscher, C.; Wilde, G.; Divinski, S. V.: Grain boundary diffusion and segregation of Cr in Ni Σ11(1̄13)[110] bicrystals: Decoding the role of grain boundary defects. Acta Materialia 278, 120229 (2024)
Ahmad, S.; Brink, T.; Liebscher, C.; Dehm, G.: Influence of variation in grain boundary parameters on the evolution of atomic structure and properties of [111] tilt boundaries in aluminum. Acta Materialia 268, 119732 (2024)
Torres, P. A. L.; Li, Y.-S.; Grön, C.; Lazaridis, T.; Watermeyer, P.; Cheng, N.; Liebscher, C.; Gasteiger, H. A.: ORR Activity and Voltage-Cycling Stability of a Carbon-Supported PtxY Alloy Catalyst Evaluated in a PEM Fuel Cell. Journal of the Electrochemical Society 170 (12), 124503 (2023)
Leitherer, A.; Yeo, B. C.; Liebscher, C.; Ghiringhelli, L. M.: Automatic identification of crystal structures and interfaces via artificial-intelligence-based electron microscopy. npj Computational Materials 9 (1), 179 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.