Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.: Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica 51 (2), pp. 429 - 441 (2016)
Friák, M.; Tytko, D.; Holec, D.; Choi, P.-P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J.: Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New Journal of Physics 17 (9), 093004 (2015)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme. Modelling and Simulation in Materials Science and Engineering 23 (4), 045005 (2015)
Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity 66, pp. 31 - 45 (2015)
Reuber, J. C.; Eisenlohr, P.; Roters, F.; Raabe, D.: Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Materialia 71, pp. 333 - 348 (2014)
Blum, W.; Dvořák, J.; Král, P. T. K.; Eisenlohr, P.; Sklenička, V.: Effect of grain refinement by ECAP on creep of pure Cu. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 590, pp. 423 - 432 (2014)
Eisenlohr, P.; Diehl, M.; Lebensohn, R. A.; Roters, F.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity 46, pp. 37 - 53 (2013)
Wang, L.; Barabash, R.; Bieler, T.; Liu, W.; Eisenlohr, P.: Study of {1121} Twinning in alpha-Ti by EBSD and Laue Microdiffraction. Metallurgical and Materials Transactions A 44 (8), pp. 3664 - 3674 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…