Zhang, S.; Yu, Y.; Jung, C.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ STEM observation of thermoelectric materials under heating and biasing conditions. The 6th joint Sino-German workshop on advanced & correlative electron microscopy of catalysts, quantum phenomena & soft matter, Bad Honnef, Germany (2024)
Zhang, S.; Yu, Y.; Jung, C.; Wang, Z.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ microstructural observation and electrical transport measurements of PbTe thermoelectrics by transmission electron microscopy. International Conference on Thermoelectrics ICT, Krakow, Poland (2024)
Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. The International Symposium on Advanced Coatings for Energy – ISC4E 2023, Ben Guerir, Morocco (2023)
Zhang, S.: Electron microscopy: Resolution and imaging contrast. DMG/DGK-AK9 Summer School “Advanced methods for the characterization of applied materials”, MPI für Kohlenforschung, Mülheim (Ruhr), Germany (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the activation of hydrogen evolution electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Daejeon, South Korea (2023)
Jung, C.; Jang, K.; Zhang, S.; Bueno Villoro, R.; Choi, P.-P.; Scheu, C.: Sb-doping induced order to disorder transition enhances the thermal stability of NbCoSn1-xSbx half-Heusler semiconductors. The 20th International Microscopy Congress, PS-07.2. Microscopy of Semiconductor Materials and Devices, Busan, Republic of Korea (2023)
Zhang, S.; Yu, Y.; Jung, C.; Abdellaoui, L.; Scheu, C.: In situ TEM unveils dynamic doping behavior of thermoelectric materials – Microstructure and property evolution under heating and electric biasing. International Microscopy Conference IMC20, Busan, Korea (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the corrosion of photo-electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Kangwon National University, Chuncheon-si, South Korea (2023)
Zhang, S.: Microstructure design in thermoelectric materials: in situ observation of doping behavior and role of grain boundary phases. Colloqium, Ruhr-Universität Bochum, Bochum, Germany (2023)
Zhang, S.: Microstructure design in thermoelectric materials: Decoupling the transport properties and in situ observation at operation conditions. Colloqium, TU Darmstadt, Darmstadt, Germany (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.