Zhu, Y.; Heo, T. W.; Rodriguez, J. N.; Weber, P. K.; Shi, R.; Baer, B. J.; Morgado, F. F.; Antonov, S.; Kweon, K. E.; Watkins, E. B.et al.; Savage, D. J.; Chapman, J. E.; Keilbart, N. D.; Song, Y.; Zhen, Q.; Gault, B.; Vogel, S. C.; Sen-Britain, S. T.; Shalloo, M. G.; Orme, C.; Bagge-Hansen, M.; Hahn, C.; Pham, T. A.; Macdonald, D. D.; Qiu, R. S.; Wood, B. C.: Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling. Current Opinion in Solid State and Materials Science 26, 101020 (2022)
Vogel, S. C.; Stein, F.; Palm, M.: Investigation of the ε-Phase in the Fe–Al System by High Temperature Neutron Diffraction. Applied Physics A 99 (3), pp. 607 - 611 (2010)
Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: Determination of the crystal structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 18 (1), pp. 150 - 156 (2010)
Stein, F.; Takaja, S.; Vogel, S. C.: On the Structure and Stability of the γ Brass-type High-temperature Phase in Al-rich Fe–Al(–Mo) Alloys. TOFA 2018, Discussion Meeting on Thermodynamics of Alloys, Seoul, South Korea (2018)
Stein, F.; Vogel, S. C.: Structure and Stability of the γ Brass-Type High-Temperature Phases in Al-Rich Fe–Al(–Mo) Alloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Vogel, S. C.; Brown, D. W.; Okuniewski, M.; Stebner, A.; Stein, F.: Characterization of Intermetallics with the HIPPO & SMARTS Neutron Beam-Lines at LANSCE. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. 20th Annual Rio Grande Symposium on Advanced Materials 2008, Albuquerque, NM, USA (2008)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. American Conference on Neutron Scattering (ACNS 2008), Santa Fe, New Mexico, USA (2008)
Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: In-situ Neutron Diffraction Experiments on the Effect of Mo on the Structure of the High-Temperature ε Phase of the Fe–Al System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. 4th Discussion Meeting of the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…