Ramana, E. V.; Durairajan, A.; Kavitha, D.; Tobaldi, D. M.; Zavašnik, J.; Bdikin, I.; Valente, M. A.: Enhanced magnetoelectric and energy storage performance of strain-modified PVDF-Ba0.7Ca0.3TiO3-Co0.6Zn0.4Fe2O4nanocomposites. Journal of energy storage 87, 111454 (2024)
Öcal, E. B.; Sajadifa, S. V.; Sellner, E. P. K.; Vollmer, M.; Heidarzadeh, A.; Zavašnik, J.; Niendorf, T.; Groche, P.: Functionally Graded AA7075 Components Produced via Hot Stamping: A Novel Process Design Inspired from Analysis of Microstructure and Mechanical Properties. Advanced Engineering Materials - Special Issue: Structural Materials 25 (15), 2201879 (2023)
Sajadifar, S. V.; Suckow, T.; Chandra, C. K.; Heider, B.; Heidarzadeh, A.; Zavašnik, J.; Reitz, R.; Oechsner, M.; Groche, P.; Niendorf, T.: Assessment of the impact of process parameters on the final material properties in forming of EN AW 7075 employing a simulated forming process. Journal of Manufacturing Processes 86, pp. 336 - 353 (2023)
Entezari, H.; Kashi, M. A.; Alikhanzadeh-Arani, S.; Montazer, A.H.; Zavašnik, J.: In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties. Materials Chemistry and Physics 266, 124508 (2021)
Žerjav, G.; Teržan, J.; Djinović, P.; Barbieriková, Z.; Hajdu, T.; Brezová, V.; Zavašnik, J.; Kovač, J.; Pintar, A.: TiO2–β–Bi2O3 junction as a leverage for the visible-light activity of TiO2 based catalyst used for environmental applications. Catalysis Today 361, pp. 165 - 175 (2021)
Djinović, P.; Zavašnik, J.; Teržan, J.; Jerman, I.: Role of CO2 During Oxidative Dehydrogenation of Propane Over Bulk and Activated-Carbon Supported Cerium and Vanadium Based Catalysts. Catalysis Letters 151 (10), pp. 2816 - 2832 (2021)
Taherzadeh Mousavian, R.; Zavašnik, J.; Heidarzadeh, A.; Bahramyan, M.; Vijayaraghavan, R. K.; McCarthy, É.; Clarkin, O. M.; McNally, P. J.; Brabazon, D.: Development of BMG-B2 nanocomposite structure in HAZ during laser surface processing of ZrCuNiAlTi bulk metallic glasses. Applied Surface Science 505, 144535 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…