Bitzek, E.: The Origin of Deformation-Induced Topological Anisotropy in Silica Glass. International Conference on the Strength of Materials ICSMA 19, Metz, France (2022)
Meier de Andrade, A.; Bitzek, E.: Fracture in the Presence of Hydrogen - Influence of the Potential. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2024)
Meier de Andrade, A.; Bitzek, E.: Fracture in the Presence of Hydrogen - Influence of the Potential. The XXII Brazilian Materials Research Society (B-MRS) Meeting 2024, Santos, Brazil (2024)
Atila, A.: Influence of Structure and Topology on the Deformation Behavior and Fracture of Oxide Glasses. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2023)
Poul, M.; Huber, L.; Bitzek, E.; Neugebauer, J.: Systematic Structure Datasets for Machine Learning Potentials: Application to Moment Tensor Potentials of Magnesium and its Defects. arXiv (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.