Ostertag, L. M.; Utzig, T.; Klinger, C.; Valtiner, M.: Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. Langmuir 34 (3), pp. 766 - 772 (2018)
Stock, P.; Utzig, T.; Valtiner, M.: Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides. Physical Chemistry Chemical Physics 19 (6), pp. 4216 - 4221 (2017)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie International Edition in English 55, pp. 9524 - 9528 (2016)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie 128, pp. 9676 - 9680 (2016)
Utzig, T.; Stock, P.; Raman, S.; Valtiner, M.: Targeted Tuning of Interactive Forces by Engineering of Molecular Bonds in Series and Parallel Using Peptide-Based Adhesives. Langmuir 31 (40), pp. 11051 - 11057 (2015)
Stock, P.; Utzig, T.; Valtiner, M.: Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts. Journal of Colloid and Interface Science 446, pp. 244 - 251 (2015)
Utzig, T.; Raman, S.; Valtiner, M.: Scaling from Single Molecule to Macroscopic Adhesion at Polymer/Metal Interfaces. Langmuir 31 (9), pp. 2722 - 2729 (2015)
Hu, Q.; Cheng, H.-W.; Stock, P.; Utzig, T.; Shrestha, B. R.; Valtiner, M.: Elucidating the structure of solid/electrolyte interfaces - Force probe experiments at hydrophilic, hydrophobic and electrified aqueous as well as ionic liquid|electrode interfaces. Bunsenmagazin 2, pp. 49 - 55 (2015)
Cheng, H.-W.; Utzig, T.; Valtiner, M.: Using a Surface-Forces-Apparatus to measure force distance profiles across confined ionic liquids. Application Note – Spectrographs (Andor) (2014)
Utzig, T.: A contribution to understanding interfacial adhesion based on molecular level knowledge. Dissertation, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…