Wang, S.; Gavalda-Diaz, O.; Luo, T.; Guo, L.; Lovell, E.; Wilson, N.; Gault, B.; Ryan, M. P.; Giuliani, F.: The effect of hydrogen on the multiscale mechanical behaviour of a La(Fe,Mn,Si)13-based magnetocaloric material. Journal of Alloys and Compounds 906, 164274 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…