Kühbach, M. T.; Kasemer, M.; Gault, B.; Breen, A. J.: Open and strong-scaling tools for atom-probe crystallography: high-throughput methods for indexing crystal structure and orientation. Journal of Applied Crystallography 54 (Pt 5), pp. 1490 - 1508 (2021)
Kühbach, M. T.; London, A. J.; Wang, Jing, J.; Schreiber, D. K.; Mendez Martin, F.; Ghamarian, I.; Bilal, H.; Ceguerra, A. V.: Community-Driven Methods for Open and Reproducible Software Tools for Analyzing Datasets from Atom Probe Microscopy. Microscopy and Microanalysis, pp. 1 - 16 (2021)
Kühbach, M. T.; Roters, F.: Quantification of 3D spatial correlations between state variables and distances to the grain boundary network in full-field crystal plasticity spectral method simulations. Modelling and Simulation in Materials Science and Engineering 28, 055005 (2020)
Diehl, M.; Kühbach, M.: Coupled experimental-computational analysis of primary static recrystallization in low carbon steel. Modelling and Simulation in Materials Science and Engineering 28 (1), 014001 (2019)
Kühbach, M.; Breen, A. J.; Herbig, M.; Gault, B.: Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Tip Orientations Using TAPSim. Microscopy and Microanalysis 25 (2), pp. 320 - 330 (2019)
Imran, M.; Kühbach, M.; Roters, F.; Bambach, M.: Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion. Materials 10 (11), 1259, pp. 1 - 18 (2017)
Diehl, M.; Kühbach, M.; Kertsch, L.; Traka, K.; Raabe, D.: Coupled Experimental–Computational Analysis of Primary Static Recrystallization in Low Carbon Steel. Seminar of the Department of Mechanical Science and Engineering of the University of Illinois, Urbana-Champaign, Il, USA (2019)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…