Li, Y.; Ponge, D.; Choi, P.-P.; Raabe, D.: Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scripta Materialia 96, pp. 13 - 16 (2015)
Jägle, E. A.; Choi, P.-P.; Raabe, D.: The maximum separation cluster analysis algorithm for atom-probe tomography: Parameter determination and accuracy. Microscopy and Microanalysis 20 (6), pp. 1662 - 1671 (2014)
Jägle, E. A.; Choi, P.-P.; Van Humbeeck, J.; Raabe, D.: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. Journal of Materials Research 29 (17), pp. 2072 - 2079 (2014)
Haley, D.; Merzlikin, S. V.; Choi, P.-P.; Raabe, D.: Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. International Journal of Hydrogen Energy 39 (23), pp. 12221 - 12229 (2014)
Pradeep, K. G.; Herzer, G.; Choi, P.; Raabe, D.: Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing. Acta Materialia 68, pp. 295 - 309 (2014)
Toji, Y.; Matsuda, H.; Herbig, M.; Choi, P.; Raabe, D.: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Materialia 65, pp. 215 - 228 (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…