Rohwerder, M.; Stratmann, M.; de Boeck, A.; Ogle, K.; Rehnisch, O.; Reier, T.; Stellnberger, K.-H.; Steinbeck, C.; Wormuth, R.: Investigation of the delamination of polymer-coated zinc and steel surfaces with the scanning Kelvin probe in a climatic cycle test. GALVATECH 2001, Brussels, Belgium (2001)
Stratmann, M.; Vander Kloet, J.; Schmidt, W.; Hassel, A. W.: Investigations into the Role of Copper in AA2024-T3 Aluminium Alloys on Filiform Corrosion Advancement and the Role of Chromium in Corrosion Inhibition. 63. AGEF-Seminar, Düsseldorf, Germany (2001)
Rohwerder, M.; Stratmann, M.: The Scanning Kelvin Probe as a New Technique to Analyze Buried Interfaces. 196th meeting of the ECS, Honolulu, USA (1999)
Rohwerder, M.; Unger, M.; Lobnig, R. E.; Stratmann, M.: Role of ammonia sulfate particles in the corrosion of electronic devices. Eurocorr'99, Aachen, Germany (1999)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: On the influence of the electrode potential on growth and stability of thiol monolayer films: Scanning tunneling microscopic and electrochemical investigations. 3rd Indo-German Symposium on modern methods in electrochemistry, Bangalore, India (1996)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: Zum Einfluß des Elektrodenpotentials auf Wachstum und Zerstörung von Thiolfilmen. Bunsentagung, Jena, Germany (1996)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: The influence of the electrode potential on the self-assembly of decanethiol on the Au(111) surface. 188th Meeting of the ECS, Chicago, IL, USA (1995)
Rohwerder, M.; de Weldige, K.; Viefhaus, H.; Stratmann, M.: Adsorption selbst-organisierter Mercaptan-Monolagen auf Gold. Workshop on Development and Industrial Application of Scanning Probe Microscopes SXM1, Münster, Germany (1994)
Pang, B.; Stratmann, M.; Vogel, D.; Erbe, A.; Rohwerder, M.: Characterization of electrochemical double layer formed on Au (111) electrode: a KPM, FTIR and APXPS investigation. 2nd Annual APXPS Workshop, Berkeley, CA, USA (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.