Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K. J. J.; Hassel, A. W.; Stratmann, M.; Widdel, F.: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology 14 (7), pp. 1772 - 1787 (2012)
Beese, P.; Venzlaff, H.; Enning, D.; Mayrhofer, K. J. J.; Widdel, F.; Stratmann, M.: Monitoring anerobic microbially influenced corrosion with electrochemical frequency modulation. 12th Topical Meeting of the International Society of Electrochemistry & XXII International Symposium on Bioelectrochemistry and Bioenergetics of the Bioelectrochemical Society, Bochum, Germany (2013)
Venzlaff, H.; Enning, D.; Widdel, F.; Stratmann, M.; Hassel, A. W.: A new model for microbiologically influenced corrosion. The European Corrosion Congress Eurocorr 2010, Moscow, Russia (2010)
Venzlaff, H.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a new highly aggressive SRB strain. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Venzlaff, H.; Enning, D. R.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a highly aggressive SRB strain. 2nd International IMPRS-SurMat Workshop on Surface and Interface Engineering in Advanced Materials, Bochum, Germany (2008)
Venzlaff, H.: Die elektrisch mikrobiell beeinflusste Korrosion von Eisen durch sulfatreduzierte Bakterien. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.