Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 230th ECS Meeting-PRiME 2016, Honolulu, HI, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings – acceleration of the trigger signal spreading. 7th Kurt-Schwabe-Symposium 2016, Mittweida, Germany (2016)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Rohwerder, M.; Dandapani, V.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Uebel, M.; Vimalanandan, A.; Lv, L.-P.; Crespy, D.; Rohwerder, M.: Dual payload capsules for corrosion protection coatings – importance of the electronic coupling at the metal/capsules interface. 67th Annual Meeting of the International Society of Electrochemistry (ISE) 2016, The Hague, The Netherlands (2016)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Rohwerder, M.: Die Rasterkelvinsonde: neue Entwicklungen für die Charakterisierung von Korrosionsschutzbeschichtungen. 7. Korrosionsschutz-Symposium, Kloster Irsee, Germany (2016)
Rohwerder, M.: Characterization of Oxides in the Heat Affected Zone. Welding Workshop “Guidelines for use of welded stainless steel in corrosive environments” at TWI, Granta Park, Cambridge, UK (2016)
Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S. V.; Bashir, A.; Yedra, L.; Eswara, S.; Ponge, D.; Raabe, D.: On the Role of δ phase in Hydrogen Embrittlement of Alloy 718: Multi-scale H-Mapping in a Ni–Nb Model Alloy. SINTEF and NTNU's Environmental Assisted Cracking (SNEAC) workshop, Trondheim, Norway (2016)
Wengert, A.; Swaminathan, S.; Vogel, A.; Rohwerder, M.: Internal oxidation of high strength steels during short-term annealing: Observation of unexpectedly fast progress of the internal oxidation and first tentative model. EFC Workshop High Temperature Corrosion, Frankfurt, Germany (2015)
Uebel, M.; Vimalanandan, A.; Tran, T. H.; Rohwerder, M.: Coatings for intelligent self-healing of macroscopic defects: first results and the major challenges. eMRS, Symposium „Self-Healing Materials", Warsaw, Poland (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…