Gogoi, M.; Deb, P.; Sen, D.; Mazumder, S. M.; Kostka, A.: Enhanced Quantum Confined Stark Effect in a mesoporous hybrid multifunctional system. Solid State Communications; Pergamon, New York 187, pp. 48 - 52 (2014)
Jha, D. K.; Shameem, M.; Patel, A. B.; Kostka, A.; Schneider, P.; Erbe, A.; Deb, P.: Simple synthesis of superparamagnetic magnetite nanoparticles as highly efficient contrast agent. Materials Letters 95, pp. 186 - 189 (2013)
Gogoi, M.; Deb, P.; Kostka, A.: Differential tunability effect on the optical properties of doped and undoped quantum dots. Physica Status Solidi (A) 209 (8), pp. 1543 - 1551 (2012)
Gogoi, M.; Deb, P.; Vasan, G.; Keil, P.; Kostka, A.; Erbe, A.: Direct monophasic replacement of fatty acid by DMSA on SPION surface. Applied Surface Science 258, pp. 9685 - 9691 (2012)
Sonowal, H.; Gogoi, M.; Kalita, E.; Vasan, G.; Erbe, A.; Deb, P.: Surface functionalisation mediated enhanced bio-distribution of superparamagnetic iron oxide nanoparticles (SPION) for diagnostic applications. International Conference on Nanoscience and Technology, Mumbai, India (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…