Ruh, A.; Spiegel, M.: Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 micture. Corr.Sci. 48, pp. 679 - 695 (2006)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion of pure iron. Mater. and Corr. 57, pp. 237 - 243 (2006)
Ruh, A.; Spiegel, M.: Kinetic investigations on salt melt induced high temperature corrosion of pure metals. Materials Science Forum 461-464, pp. 61 - 68 (2004)
Ruh, A.; Spiegel, M.: Salt melt induced etching phenomena on metal surfaces. Eurocorr 2005, Lisbon, Portugal, September 04, 2005 - September 08, 2005., (2005)
Ruh, A.; Spiegel, M.: Influence of HCl and water vapour on the corrosion kinetics of Fe beneath molten ZnCl2/KCl. In: Proceedings of EUROCORR 04, 1. Proceedings of EUROCORR 04, Nice, France, 2004. (2004)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Ruh, A.; Spiegel, M.: Kinetic investigations on salt melt induced high temperature corrosion of pure metals. 6th Int. Symposium on High Temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…