Biedermann, P. U.; Flechtner, K.-D.: Towards a Thermodynamic Theory of Electrochemical Reactions in Aqueous Media. A DFT Study of the Intermediates of Oxygen Reduction. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
Biedermann, P. U.; Flechtner, K.-D.: Theoretical Insights into the Mechanism of the Oxygen Reduction Reaction. Electrochemistry 2010, Ruhr-Universität Bochum, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Spectroscopic Investigation of the Oxygen Reduction Reaction (ORR) on Semiconductor Surfaces. Electrochemistry 2010 - From microscopic understanding to global impact, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Electrochemical oxygen reduction on semiconductor electrodes. 109th Annual meeting of the German Bunsen Society of Physical Chemistry (Bunsentagung), Bielefeld, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…