Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Strongly versus weakly non-local dislocation transport and pile-up. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
Reese, S.; Kochmann, J.; Mianroodi, J. R.; Wulfinghoff, S.; Svendsen, B.: Two-scale FE-FFT phase-field-based computational modeling of bulk microstructural evolution and nanolaminates. 12th World Congress on Computational Mechanics, Seoul, South Korea (2016)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of algorithms and solution methods for classic and phase-field-based periodic inhomogeneous elastostatics. ECCOMAS Congress 2016, Crete, Greece (2016)
Svendsen, B.; Mianroodi, J. R.: Atomistic and phase-field modelling of nanoscopic dislocation processes. Dislocation based Plasticity, Kloster Schöntal, Schöntal, Germany (2016)
Mianroodi, J. R.; Svendsen, B.: Periodic molecular dynamics modeling of dislocation-stacking fault interaction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Mianroodi, J. R.; Svendsen, B.: Molecular Dynamics-Based Modeling of Dislocation-Stacking Fault Interaction. 84th Annual Meeting of International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad, Serbia (2013)
Mianroodi, J. R.; Svendsen, B.: Modeling and calculation of the stacking fault free energy of iron at high temperature. International Workshop Molecular Modeling and Simulation: Natural Science meets Engineering, Frankfurt a. M., Germany (2013)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of Methods for Discontinuous and Smooth Inhomogeneous Elastostatics. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.