Roters, F.: Modellierung von Verformungsvorgängen auf Basis der Kristallplastizität. Lecture: DGM Fortbildung Modellierung und Simulation, ICAMS Bochum [Germany], November 18, 2011
Kords, C.: On the role of dislocation transport in the constitutive description of crystal plasticity. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Roters, F.: Advanced material models for the crystal plasticity finite element method - Development of a general CPFEM framework. Habilitation, RWTH Aachen, Fakultät für Georessourcen und Materialtechnik, Aachen, Germany (2011)
Ma, A.; Roters, F.; Raabe, D.: Simulation of textures and Lankford values for face centered cubic polycrystaline metals by using a modified Taylor model. (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…