Tasan, C. C.; Zaefferer, S.; Raabe, D.: Deformation induced dislocation interactions near martensite-ferrite phase boundaries. MRS Fall Meeting 2011, San Francisco, CA, USA (2011)
Tasan, C. C.: Micro-mechanical characterization and quantification of ductile damage. Seminar talk at Institut für Umformtechnik und Leichtbau, Dortmund, Germany (2010)
Zhang, J.; Raabe, D.; Lai, M.; Yan, D.; Tasan, C. C.: Site-preferential recrystallization and nano-precipitation to achieve improved mechanical properties. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Winter School 2014, Research Training Group 1483,
Karlsruher Intitut f. Technologie (KIT), Karlsruhe, Germany (2014)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Yan, D.; Tasan, C. C.; Raabe, D.: Graded, ultrafine-grained, ferrite/martensite dual phase steel: a case study for damage-resistant microstructure design. Physics based materials models and experimental observations, Cesme Turkey (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Size effects on mechanical stability of metastable austenite. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Jeannin, O.; Tasan, C. C.; Raabe, D.: Micro-testing of isolated single/bi-crystals of complex alloys with ECCI & δ-EBSD imaging. 4th International Workshop on Remote Electron Microscopy and In Situ Studies, Lisbon, Portugal (2013)
Yan, D.; Tasan, C. C.; Ponge, D.; Diehl, M.; Roters, F.; Hartmaier, A.; Raabe, D.: Experimental-Numerical Analysis of Stress and Strain Partitioning in Dual Phase Steel. 10th Materials Day, Joint workshop of the Materials Research Department (MRD) and the IMPRS-SurMat, Bochum, Germany (2012)
Scharifi, E.; Tasan, C. C.; Hoefnagels, J. P. M.; Raabe, D.: Microstructural analysis of strain rate sensitivity of dual-phase steel. Materials Science Engineering (MSE) 2012, Dramstadt, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…