Tan, K. S.; Hassel, A. W.; Stratmann, M.: Design and construction of a micro-indenter for tribological investigations. Mat.-Wiss. Werkstofftech. 36, pp. 13 - 17 (2005)
Hassel, W.; Tan, K. S.; Stratmann, M.: Examination of particle-surface contact under tribo-corrosion conditions with a novel low force micro indenter. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. COST F2 2nd Workshop „Local Flow Effects in Hydrodynamic Systems”, Paris, France (2003)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. Seminar an der Graduate School of Engineering der Universität von Hokkaido, Sapporo, Japan (2003)
Smith, A. J.; Tan, K. S.; Stratmann, M.; Hassel, A. W.: Korrelation von “Jet impingement” und Mikroindentation Versuchen. 79. AGEF Seminar - 25 Jahre Elektrochemie in Düsseldorf, Düsseldorf, Germany (2004)
Tan, K. S.; Hassel, A. W.; Stratmann, M.: Micro-indenter for tribo-corrosion investigations. 5th European Symposium on Nanomechanical Testing, Hückelhoven, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.