Yang, J.; Todorova, M.; Neugebauer, J.: Comparative analysis of surface phase diagrams in aqueous environment: Implicit vs explicit solvation models. The Journal of Chemical Physics 160 (16), 164715 (2024)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Laterally Resolved Free Energy Profiles and Vibrational Spectra of Chemisorbed H Atoms on Pt(111). Journal of Chemical Theory and Computation 20 (5), pp. 2192 - 2201 (2024)
Kumar, K. B. S.; Todorova, M.; Neugebauer, J.: Construction and analysis of surface phase diagrams to describe segregation and dissolution behavior of Al and Ca in Mg alloys. Physical Review Materials 7, 095802 (2023)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Impact of Water Coadsorption on the Electrode Potential of H–Pt(1 1 1)-Liquid Water Interfaces. Physical Review Letters 126 (16), 166802 (2021)
Yoo, S.-H.; Siemer, N.; Todorova, M.; Marx, D.; Neugebauer, J.: Deciphering Charge Transfer and Electronic Polarization Effects at Gold Nanocatalysts on Reduced Titania Support. The Journal of Physical Chemistry C 123 (9), pp. 5495 - 5506 (2019)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. Physical Review Letters 120 (24), 246801 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…