Ankah, G. N.; Meimandi, S.; Renner, F. U.: Dealloying of Cu3Pd Single Crystal Surfaces. Journal of the Electrochemical Society 160 (8), pp. C390 - C395 (2013)
Valtiner, M.; Ankah, G. N.; Bashir, A.; Renner, F. U.: Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design. Review of Scientific Instruments 82 (2), pp. 023703-1 - 023703-8 (2011)
Renner, F. U.; Ankah, G.; Pareek, A.: Surface Morphology Changes during Dealloying. Pacific Rim Meetin on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Ankah, G. N.; Renner, F. U.; Rohwerder, M.: Fundamental Investigations of the Corrosion of Binary Alloys. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Ankah, G. N.: Investigations of the Selective Dissolution of Cu3Au(111): In-situ and Ex-situ Characterization. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.