Abu-Farsakh, H.; Neugebauer, J.: Enhancing nitrogen solubility in GaAs and InAs by surface kinetics: An ab initio study. Physical Review B 79, 155311, pp. 155311 - 155323 (2009)
Abu-Farsakh, H.; Neugebauer, J.: Exploring the unusual diffusion of N adatoms on GaAs(001) using first principles calculations. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Abu-Farsakh, H.; Neugebauer, J.: Exploring the unusual diffusion of N adatoms at GaAs(001) surface. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing N solubility in diluted nitrides by surface kinetics: An ab-initio study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Abu-Farsakh, H.; Neugebauer, J.: Ab-initio study of the thermodynamics and kinetics of N at GaAs(001) surface. PAW workshop 2007, Goslar, Germany (2007)
Abu-Farsakh, H.; Neugebauer, J.: In-N anti-correlation in InGaAsN alloys: The delicate interplay between adatom thermodynamics and kinetics. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Abu-Farsakh, H.; Neugebauer, J.: Tailoring the N-solubility in InGaAs-alloys by surface engineering: Applications and limits. 1. Harzer Ab initio Workshop, Clausthal, Germany (2006)
Abu-Farsakh, H.; Neugebauer, J.: Incorporation of N at GaAs and InAs surfaces: An ab-initio study. Technische Universität Berlin, Berlin, Germany (2006)
Abu-Farsakh, H.; Dick, A.; Neugebauer, J.: Incorporation of N at GaAs and InAs surfaces. Deutsche Physikalische Gesellschaft Spring Meeting of the Division Condensed Matter, Dresden, Germany (2006)
Abu-Farsakh, H.; Neugebauer, J.: Combined ab-initio and Monte Carlo calculations to explore the surface thermodynamics and kinetics of dilute nitrides. 8th International Conference on Nitride Semiconductors (ICNS-8), Jeju Island, South Korea (2009)
Abu-Farsakh, H.; Neugebauer, J.: The role of surface kinetics in achieving high non-equilibrium N concentrations in bulk GaAs. DPG Spring Meeting 2009, Dresden, Germany (2009)
Abu-Farsakh, H.; Neugebauer, J.; Albrecht, M.: Ab-initio study of compositional anti-correlation of In and N in InGaAsN alloys. The 7th International Conference of Nitride Semiconductors (ICNS-7), Las Vegas, NV, USA (2007)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing the solubility of N in GaAs and InAs by surface kinetics. 28th International Conference on the Physics of Semiconductors, Vienna, Austria (2006)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing bulk solubility by surface engineering: An ab-initio study. Workshop: Ab initio Description of Iron and Steel, Status and future challenges, Ringberg Castle, Germany (2006)
Abu-Farsakh, H.: Understanding the interplay between thermodynamics and surface kinetics in the growth of dilute nitride alloys from first principles. Dissertation, University of Paderborn, Paderborn, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…