Eumann, M.; Sauthoff, G.; Palm, M.: Re-evaluation of phase equilibria in the Al–Mo system. International Journal of Materials Research 97 (11), pp. 1502 - 1511 (2006)
Schuster, J. C.; Palm, M.: Ressessment of the Binary Aluminium – Titanium Phase Diagram. Journal of Phase Equilibria and Diffusion 27 (3), pp. 255 - 277 (2006)
Stein, F.; Palm, M.; Sauthoff, G.: Mechanical Properties and Oxidation Behaviour of Two-Phase Iron Aluminium Alloys with Zr(Fe,Al)2 Laves Phase or Zr(Fe,Al)12 τ1 Phase. Intermetallics 13 (12), pp. 1275 - 1285 (2005)
Stein, F.; Palm, M.; Sauthoff, G.: Structure and stability of Laves phases. Part II: Structure type variations in binary and ternary systems. Intermetallics 13 (10), pp. 1056 - 1074 (2005)
Wasilkowska, A.; Bartsch, M.; Stein, F.; Palm, M.; Sauthoff, G.; Messerschmidt, U.: Plastic deformation of Fe–Al polycrystals strengthened with Zr-containing Laves phases: Part II. Mechanical properties. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 381 (1-2), pp. 1 - 15 (2004)
Stein, F.; Palm, M.; Sauthoff, G.: Structure and stability of Laves phases. Part I - Critical assessment of factors controlling Laves phase stability. Intermetallics 12 (7-9), pp. 713 - 720 (2004)
Eumann, M.; Palm, M.; Sauthoff, G.: Iron-rich iron-aluminium-molybdenum alloys with strengthening intermetallic mu phase and R phase precipitates. Steel Research International 75 (1), pp. 62 - 73 (2004)
Löffler, F.; Palm, M.; Sauthoff, G.: Iron-Rich Iron-Titanium-Silicon Alloys with Strengthening Intermetallic Laves Phase Precipitates. steel research international 75 (11), pp. 766 - 772 (2004)
Palm, M.; Sauthoff, G.: Deformation Behaviour and Oxidation Resistance of Single-Phase and Two-Phase L21 Fe–Al–Ti Alloys. Intermetallics 12 (12), pp. 1345 - 1359 (2004)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part II. Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology 136 (1-3), pp. 114 - 119 (2003)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production-scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part I. Production of master alloy remelt ingots and investment casting of combustor liner model panels. Journal of Materials Processing Technology 136 (1-3), pp. 105 - 113 (2003)
Palm, M.; Zhang, L.; Stein, F.; Sauthoff, G.: Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °C. Intermetallics 10 (6), pp. 523 - 540 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…