Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size-dependent coherent twin boundary strength contribution in Cu micropillars. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. ECI conference 2022, Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Jentner, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Challenges in the phase identification of steels using unsupervised clustering of nanoindentation data. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Pemma, S.; Brink, T.; Janisch, R.; Dehm, G.: Stress driven grain boundary migration for different complexions of a Cu tilt grain boundary. Materials Science and Engineering Congress 2022, Darmstadt, Germany (2022)
Dehm, G.: New insights on the atomic grain boundary structure in pure and alloyed Cu and Fe. 10th International Workshop on Interfaces, Santiago de Compostele, Spain (2022)
Dehm, G.: Structure and properties of tilt grain boundaries in Cu thin films. Graduiertenkollegs GRK1896 „In situ microsopy with electrons, X-rays and scanning probes: Abschlusssymposium, Erlangen, Germany (2022)
Dehm, G.: Grain Boundary Phases (Complexions) in Pure and Alloyed Cu: Insights from Advanced Electron Microscopy and Molecular Dynamics. Gordon Research Conference Structural Nanomaterials, Les Diablerets, Switzerland (2022)
Dehm, G.: Grain boundary phase transitions in pure and alloyed Cu. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2022, Berndkastel-Kues, Germany (2022)
Dehm, G.; Rao, J.; Duarte, M. J.: Impact of Hydrogen on Dislocation Nucleation and Strength in bcc Fe–Cr alloys. TMS 2022 Annual Meeting, Symposium “Mechanical Behavior at the Nanoscale VI”, Anaheim, CA, USA (2022)
Hosseinabadi, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Impact of an incoherent twin boundary on the mechanical response of Cu bi-crystalline micropillars. 11th European Solid Mechanics Conference - ESMC 2022, Galway, Ireland (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…