Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U.: Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion. Physical Review B 85 (19), 195202, pp. 1 - 8 (2012)
Schick, M.; Hallstedt, B.; Glensk, A.; Grabowski, B.; Hickel, T.; Hampl, M.; Gröbner, J.; Neugebauer, J.; Schmid-Fetzer, R.: Combined ab initio, experimental, and CALPHAD approach for an improved thermodynamic evaluation of the Mg–Si system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 37, pp. 77 - 86 (2012)
Holec, D.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.: Trends in the elastic response of binary early transition metal nitrides. Physical Review B 85, pp. 064101-1 - 064101-9 (2012)
Hickel, T.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Advancing density functional theory to finite temperatures: Methods and applications in steel design. Journal of Physics: Condensed Matter 24, 053202 (2012)
Holec, D.; Friák, M.; Dlouhy, A.; Neugebauer, J.: Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops. Physical Review B 84, pp. 224119-1 - 224119-8 (2011)
Grabowski, B.; Söderlind, P.; Hickel, T.; Neugebauer, J.: Temperature-driven phase transitions from first principles including all relevant excitations: The fcc-to-bcc transition in Ca. Physical Review B 84 (21), pp. 214107-1 - 214107-20 (2011)
Du, Y. J. A.; Ismer, L.; Rogal, J.; Hickel, T.; Neugebauer, J.; Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in alpha- and gamma-Fe. Physical Review B 84 (14), pp. 144121-1 - 144121-13 (2011)
Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic and electronic excitations. Physical Review B 84 (12), 125101 (2011)
Ismer, L.; Ireta, J.; Neugebauer, J.: A density functional theory based estimation of the anharmonic contributions to the free energy of a polypeptide helix. Journal of Chemical Physics 135 (8), pp. 084122-1 - 084122-7 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.