Hickel, T.; Freysoldt, C.; Janßen, J.; Wang, N.; Zendegani, A.: High-throughput optimization of finite temperature phase stabilities: Concepts and application. Coffee with Max Planck, virtual seminar organized by the MPIE, Düsseldorf, Germany (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. AMS Seminar, virtual, Bochum, Germany (2020)
Neugebauer, J.; Lymperakis, L.; Janßen, J.; Huber, L.; Hickel, T.: Modeling crystal growth and materials design in high dimensional chemical and structural configuration spaces. German Conference on Crystal Growth DKT 2020, München/Garching, Germany (2020)
Hickel, T.: Application of Density Functional Theory in the Context of Phase Diagram Modelling. MSIT Winter School on Materials Chemistry, Virtual Event, Castle Ringberg, Tegernsee (2020)
Hickel, T.; McEniry, E.; Nazarov, R.; Dey, P.: Ab initio basierte Simulation zur Wasserstoffversprödung in hoch-Mn Stählen. Seminar der Staatlichen Materialprüfungsanstalt Darmstadt, Institut für Werkstoffkunde, Darmstadt, Germany (2020)
Hickel, T.; Aydin, U.; Sözen, H. I.; Dutta, B.; Pei, Z.; Neugebauer, J.: Innovative concepts in materials design to boost renewable energies. Seminar of Institute for Innovative Technologies, SRH Berlin University of Applied Sciences, Berlin, Germany (2020)
Janßen, J.; Hickel, T.; Neugebauer, J.: Automated ab-initio Determination of Materials Properties at finite Temperatures with pyiron. CNLS Seminar, Los Alamos, NM, USA (2019)
Neugebauer, J.; Huber, L.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio input for multiphysics models: Accuracy, performance and challenges. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Erlangen, Germany (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…