Oellers, T.; Arigela, V. G.; Kirchlechner, C.; Pfetzing-Micklich, J.; Dehm, G.; Ludwig, A.: Combinatorial synthesis and characterization of binary Cu–Ag alloys in the form of microstructured thin films [Kombinatorische Synthese und Charakterisierung binärer Cu–Ag Legierungen in Form mikrostrukturierter dünner Schichten]. Metall 72 (11), p. 429 (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of binary Cu–X alloys produced by Combinatorial Synthesis. International conference on metallurgical coatings and thin films (ICMCTF) 2019, San Diego, CA, USA (2019)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Mechanical characterization of copper thin films produced by photolithography with a novel microscale high temperature loading rig. The International Conference on Experimental Mechanics, (ICEM) 2018, Brussels, Belgium (2018)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. Euromat 2017, Thessaloniki, Greece (2017)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics with a novel temperature measurement approach. Advanced nano-mechanical techniques for academic and industrial research, Aachen, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Temperature dependent mechanical characterization of sputtered Copper-Silver thin film tensile specimens produced by photolithography. Materials Chain International Conference, Bochum, Germany, Bochum, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. GDRi Mecano General School 2018, Cargese, Corsica, France (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. GRi Mecano General meeting, Toulouse, France (2017)
Arigela, V. G.; Kirchlechner, C.; Janisch, R.; Hartmaier, A.; Dehm, G.: Setup of a microscale fracture apparatus to study the interface behaviour in materials at high temperatures. Materials Day 2016, Ruhr Universitat Bochum, Bochum, Germany (2016)
Arigela, V. G.: Development and application of a high-temperature micromechanics stage with a novel temperature measurement approach. Dissertation, Ruhr-Universität Bochum (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.