Vlasak, R.; Klueppel, I.; Grundmeier, G.: Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer films on semiconducting electrodes. Electrochim. Acta 52 (28), pp. 8075 - 8080 (2007)
Posner, R.; Giza, G.; Vlasak, R.; Grundmeier, G.: Electrochemical and Spectroscopic Analysis of Ion Transport Processes along Polymer/Oxide/Metal Interfaces in Corrosive and Non-Corrosive Atmosphere. Euradh 2008 - Adhesion '08, St Catherine's College, Oxford, UK (2008)
Grundmeier, G.; Valtiner, M.; Vlasak, R.: Adhesion promoting films and monolayers at polymer/oxide/metal interfaces. NACE2008 RIP Session Coatings and Inhibitors, New Orleans, LA, USA (2008)
Grundmeier, G.; Posner, R.; Vlasak, R.: Combined Spectroscopic and Electrochemical Studies of Water and Ion Transport along Polymer/Oxide/Metal Interphases. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Grundmeier, G.; Fink, N.; Giza, M.; Popova, V.; Vlasak, R.; Wapner, K.: Application of combined spectroscopic, electrochemical and microscopic techniques for the understanding of adhesion and de-adhesion at polymer/metal interfaces. 24. Spektrometertagung, Dortmund, Germany (2005)
Vlasak, R.; Grundmeier, G.: Surface-Enhanced Infrared Spectroscopy of Ultra-Thin Inorganic and Organic Films. 104. Hauptversammlung der Deutschen Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt a. M., Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…