Li, X.; Shang, C.; Ma, X.; Gault, B.; Subramanian, S.; Sun, J.; Misra, R. D. K.: Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel. Scripta Materialia 139, pp. 67 - 70 (2017)
Ma, X.; Langelier, B.; Gault, B.; Subramanian, S.: Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A 48 (5), pp. 2460 - 2471 (2017)
Peng, Z.; Choi, P.-P.; Gault, B.; Raabe, D.: Evaluation of analysis conditions for laser-pulsed atom probe tomography: example of cemented tungsten carbide. Microscopy and Microanalysis 23 (2), pp. 431 - 442 (2017)
Koprek, A.; Cojocaru-Mirédin, O.; Würz, R.; Freysoldt, C.; Gault, B.; Raabe, D.: Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics 7 (1), 7762819, pp. 313 - 321 (2017)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.